

Copyright © 2024 DSR Corporation
1536 Cole Blvd, Suite 325 Golden, CO 80401, USA
www.dsr-iot.com

ZBOSS Datasheet
Version 1.10

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 2 of 25

Contents

CONTENTS 2	

ARCHITECTURE 4	
ZBOSS Stack Key Architecture Points 4	
Cross-Platform Support 5	
Common Architecture 5	
ZBOSS Architecture Options 5	

ZBOSS Monolithic Architecture 6	
ZBOSS Network Co-processor (NCP) Architecture 6	
ZBOSS Split over MAC 7	
ZBOSS Multi-PAN 8	

OS/Hardware Abstraction 9	

SUPPORTED PLATFORMS 10	
Hardware Platforms 10	

Supported Transceivers 10	
Supported MCUs 10	
Supported SoC 10	
Supported OS 11	
Simulators 12	

ZBOSS Footprint Sample 12	

ZBOSS SERVICES AND FEATURES 13	
Compliance to Standards 13	
MAC 802.15.4 13	

Mac Implementations 14	
Network Layer 14	
Application Layer 15	
Green Power 15	
Security 17	
ZCL 18	
Base Device Behavior 20	
SE1.4 20	
Zigbee Direct 21	
Production Configuration 21	
Appendix I: ZBOSS Middleware 22	

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 3 of 25

Integrated Sensors and Devices 22	
Extensions 23	
Reasons to choose Smart Gateway Middleware solution: 23	

Appendix II: DSR SE1.4 Test Harness 24	

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 4 of 25

Architecture

ZBOSS Stack Key Architecture Points

Cross-platform uses OS and hardware-dependent layer for

minimum effort porting

OS-less configuration ability to run without OS support

Multi-tasking uses internal cooperative multitasking

Application integration applications are in the same address space as the
stack kernel and use the same multi-tasking model

Fixed memory footprint does not use dynamic memory allocation, which
leads to predictable memory budgeting

Optimized memory usage low RAM capacity on target device – special
technique in handling data structures

Zero-copy approach unnecessary data copy operations are excluded to
support more efficient usage of the CPU

Shared memory usage use of 'packet buffer' data structure for data
exchange and memory allocation

Custom build procedure stack configuration at compilation time, using C
preprocessor

Easy-to-use API inter-layers API uses primitives similar to the ones
defined in the Zigbee® and 802.15 standards

Efficient use in Linux the stack is implemented in Linux as user-space
process with applications inside the stack – stack
kernel is implemented as a library (library’s set)

Optimized power
consumption

 ZBOSS interrupt-driven I/O to improve battery
consumption and exclude polling

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 5 of 25

Cross-Platform Support
Cross-platform support is one of the unique features of ZBOSS. To achieve portability,
the following concepts were used:
§ Cross-platform compatibility was a goal at the start of development and drove the

architectural design and decisions
§ Hardware-dependent code is isolated in the Hardware Abstraction Layer (HAL)
§ Platform-specific logic is localized using macros
§ The same stack architecture is used for every platform
§ All the implementation logic is in a user-space. Only transport related code runs in

a kernel-space (transceiver interruption handling and SPI transport in Linux OS)
§ Use of standard solutions when possible (spidev driver in Linux)

Common Architecture
The diagram shows existing ZBOSS layers. Note: currently ZBOSS SDK with SE
profile support and ZB3.x version are provided as separate SDKs.

ZBOSS Architecture Options
ZBOSS SDK provides 3 major options to run the stack and an application on top of it:
1. Monolithic architecture: both Zigbee stack and application run on the same SoC or

MCU

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 6 of 25

2. Network Co-processor (NCP) architecture: Zigbee stack runs on a SoC,
connected to a Host MCU. Application part runs on the host side.

3. Split over MAC architecture. 802.15.4 MAC runs on a SoC, connected to a Host
MCU. Zigbee stack and application run on the host.

4. Multi-PAN architecture. A single 802.15.4 radio is used to run two stacks, Zigbee
and Thread, simultaneously.

ZBOSS Monolithic Architecture
With monolithic architecture, both the Zigbee stack and the application run on the
same SoC or MCU. This architecture is used for products which use a SoC powerful
enough to run a full-featured Zigbee stack and application. A Linux platform with a
connected radio transceiver is another example where monolithic architecture is used
in ZBOSS.
ZBOSS SDK provides:

• Zigbee stack (ZB PRO Core) in binaries
• Zigbee application level (ZCL, BDB, SE1.4) in source files
• Full-fledged ZBOSS API for application development

ZBOSS Network Co-processor (NCP) Architecture
Network Co-processor (NCP) architecture is used when a Zigbee SoC is powerful
enough to run a full Zigbee stack instance, but there is a need to run an application
part on the host to which the SoC is connected via serial transport – UART, USB, SPI,
etc. In this case the SoC implements a Zigbee Compliant Platform while the
application component runs on the host.
NCP architecture might be a good choice when an isolation of networking and
application layers is required, or SoC is not powerful enough to run a monolithic
application.

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 7 of 25

ZBOSS SDK provides:
• Zigbee stack (ZB PRO Core) for SoC in binaries
• Zigbee application level (ZCL, BDB, SE1.4) and serial transport in source files
• Full-fledged ZBOSS API for application development (the same as monolithic

SDK API)
• NCP serial protocol, provides low-level ZB networking API (no application level

API is provided in this case).

ZBOSS Split over MAC
Split over MAC is most useful when connecting a low-resource Zigbee SoC to a Linux
(or other) host. In this architecture, an application and part of the ZBOSS stack run on
the host, while ZBOSS MAC runs on the SoC. Serial connection (UART, SPI, USB) is
utilized with a minimal speed of 115 kbps.
ZBOSS SDK provides:

• Zigbee MAC layer for SoC in binaries
• Zigbee networking layers for a host in binaries
• Zigbee application level (ZCL, BDB, SE1.4) in source files
• Full-fledged ZBOSS API for application development (the same as monolithic

SDK API)

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 8 of 25

ZBOSS Multi-PAN
ZBOSS Multi-PAN architecture allows to run two stacks simultaneously, ZBOSS and
OpenThread, using a single 802.15.4 radio. ZBOSS MAC and OpenThread RCP run
on a SoC, which is connected to a Linux host using serial connection (UART, SPI).
ZBOSS, OpenThread and applications for both stacks run on the host.

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 9 of 25

OS/Hardware Abstraction
OS/HW platform abstraction is necessary to achieve cross-platform support. C
preprocessor is used to support the abstraction layer. The main idea is to avoid using
a large amount of “ifdef” pre-processor directives related to portability in the source
code, in general, and decrease the number of “ifdef” constructions in the header files
not related to the OS abstraction layer. Platform abstraction are implemented as C
functions that are placed into OS abstraction layers, while platform-dependent global
type declarations and definitions are placed into specific header files.

Global definitions and type declarations can be used anywhere – that is why in the
above architecture picture, the OS abstraction layer is displayed as a global layer.

The following objects are platform-dependent:
§ Type definitions for base types (8-bit controller vs 32-bit Linux device)
§ Definitions for various compilers (gcc, Keil, IAR, etc.)
§ Transceiver I/O (interrupt handling for 8051 or ARM vs. file I/O in Linux)
§ Wait for I/O (device sleep for 8051 or ARM, wait in select() in Linux)

§ Trace I/O (UART for 8051 or ARM, SWD for ARM, file in Linux)
§ MAC traffic dump (UART for 8051 or ARM, file in Linux)
§ Timer (8051, ARM timer at device, select() timeout in Linux)

Note that the MAC layer is logically divided into 3 parts:
§ Platform-independent MAC logic and API
§ Transceiver-dependent (but platform-independent) part
§ Platform-dependent MAC transport

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 10 of 25

Supported Platforms

Hardware Platforms
ZBOSS runs on various hardware platforms. A hardware platform is defined by an
MCU, a transceiver and an OS. Below is a list of supported hardware. A target
platform may be defined as almost any combination of MCU and transceiver listed
below.

Supported Transceivers
§ Qorvo (GreenPeak)

§ GP501, GP710, GP711, GP712
§ TI

§ CC2520
§ CSEM

§ IcyTRX65
§ Microchip

§ ATSAMR21G18A
§ MRF24J40

§ Synopsys Radio/RF PHY IP
§ Several other chipsets under NDA

Supported MCUs
§ ARM MCU Core

§ Cortex M3, Cortex M4, ARM9
§ XAP5 Core
§ 8051 MCU Core
§ ARC EM4/EM6 Synopsys Core

Supported SoC
§ Nordic

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 11 of 25

§ nRF52840, nRF52833, nRF52811
§ Qorvo (GreenPeak)

§ QPG6095, GP691, GP565
§ TI

§ 2.4 GHz SoC: CC2652, CC2530, CC2531, CC2533, CC2538
§ Multi band: CC1352
§ Sub-GHz SoC: CC1310, CC1312

§ ON Semiconductors
§ NCS36510

§ SiLabs
§ EFR32MG1, EFR32MG12, EFR32MG13, EFR32MG21

§ Rafael Micro
§ RT5

§ Espressif Systems
§ ESP32-H2

§ Telink
§ TLSR8267, TLSR8269

§ UBEC
§ UZ2400, UZ2410

§ Several other SoC under NDA

Supported OS

§ Linux: If Linux OS is installed, any MCU may be used – it doesn’t affect ZBOSS
functionality. The installed transceiver is an important piece. The following is a list of
proven Linux-based platforms:

§ Raspberry Pi
§ Broadcom MIPS (BMIPS5000)
§ Entropic XI3
§ Intel Galileo

§ TI-RTOS
§ Zephyr
§ OS-less: In this case both MCU and transceiver are important for running ZBOSS.

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 12 of 25

§ Olimex STM32-E407
§ STM32F4DISCOVERY

Simulators
§ ZBOSS Network Simulator

ZBOSS Footprint Sample
ZBOSS’s footprint (RAM and ROM consumption) is highly dependent on the selected
platform and on the included features. The table below defines values of resources
required to run ZBOSS-based applications.

The values below are for ZBOSS4.0 ZB3.0 version, running on nRF52840 SoC (gcc
10.3.0 compiler).

 Features Flash

(ROM)
RAM

Zigbee 3.0 coordinator with a sample
application

271 Kb 27 Kb

Zigbee 3.0 end device with a sample
application

204 Kb 16 Kb

Zigbee Direct library 18 Kb 2 Kb

The values in two next tables are for ZBOSS 3.0 SE1.4 version, running on TI CC2652
SoC (ARM Cortex-M4 core).

 Features Flash

(ROM)
RAM

SE1.4 coordinator (without app) 226 Kb 25 Kb
SE1.4 ED (without app) 180 Kb 23.7 Kb

 Features Flash

(ROM)
RAM

SE1.4 coordinator WITH sample app 231 Kb 38 Kb
SE1.4 ED WITH sample app 183 Kb 25 Kb

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 13 of 25

ZBOSS Services and
Features

Compliance to Standards
ZBOSS 4.0 follows Zigbee 3.0 specifications set:
§ MAC: 802.15.4-2011 and 802.15.4-2015, IEEE Standard for Local and

metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks
(LR-WPANs)

§ Zigbee Specification, revisions 21, 22 and 23
§ Annex D of Zigbee r23 Specification (Zigbee Sub-GHz)
§ Base Device Behavior Specification version 3.0.1
§ Zigbee Cluster Library Specification, revision 8
§ Zigbee PRO Green Power feature specification Basic functionality set
§ Zigbee Direct Specification

MAC 802.15.4
The IEEE 802.15.4 standard defines the two lower layers: the physical (PHY) layer and
the medium access control (MAC) sub-layer. ZBOSS implements a MAC sub-layer
that controls access to the radio channel using a CSMA-CA mechanism.
ZBOSS MAC’s main features and services include:
§ Bands supported: 2.4 GHz, Sub-GHz
§ MAC data service

§ Data transferring
§ Channel selection
§ CSMA-CA mechanism
§ Frame filtration
§ Auto-acknowledgements

§ MAC management service
§ Starting and maintaining PAN

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 14 of 25

§ Channel scanning
§ Association/disassociation
§ Beacon generation and notification

Mac Implementations

1. ZBOSS upper levels can run on top of one of the following MAC implementations
§ ZBOSS native MAC compiled to ZBOSS
§ Third-party MAC linked to ZBOSS
§ Third-party MAC on SoC connected via serial using customer-specific

protocol
§ ZBOSS split over MAC: ZBOSS native MAC via USB/serial/SPI using

proprietary protocol
2. For all cases except #1 ZBOSS has special “adapter” layer which translates

underlying MAC API into the native ZBOSS MAC API for communication with the
upper ZBOSS layers

3. Adapter layer implements ZBOSS traffic dump debug feature as well

Network Layer
The network layer is required to ensure correct operation of the IEEE 802.15.4-2011
MAC sub-layer and a suitable service interface to the application layer.

ZBOSS Network layer’s main services and features include:
1. NWK Data service

§ Unicast/Broadcast/Multicast Communication
2. NWK Management service and maintenance

§ Establishing a new network
§ Permitting devices to join network
§ Neighbor table support
§ Network discovery
§ Joining a network
§ Leaving a network
§ Detecting and resolving address conflicts
§ Managing a PAN ID Conflict

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 15 of 25

§ Routing
§ Network parameters configuration
§ Frequency agility
§ End device timeout protocol and aging mechanism

3. Works With All Hubs (WWAHu)
§ Parent selection

Application Layer
The Application (APL) Layer consists of the APS sub-layer and the ZDO (Zigbee device
object). The application support sub-layer (APS) provides an interface between the
network layer (NWK) and the application layer (APL) through a general set of services.

The following services are provided by ZBOSS:
1. APS Data service

§ Supported frames: data, command, and acknowledgement
§ Supported data transfer addressing modes: Group, Unicast with short

address, and Unicast with IEEE address
2. APS Management service

§ Binding Primitives
§ Information Base Maintenance
§ Group Management

3. Zigbee Descriptors services
§ Supported descriptors: Node, Node power, Simple

4. Device and Service Discovery Client services
5. Device and Service Discovery Server services
6. Network Management Client services
7. Network Management Server services

Green Power
Energy constrained devices, including battery-less devices, make use of the Zigbee
PRO Green Power Basic features to securely join Zigbee PRO networks. Such Green
Power Devices (GPD) may harvest different amounts of energy depending on the

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 16 of 25

technology used. The Zigbee standard defines several types of Green Power
Infrastructure devices responsible for GPD commissioning as well as receiving and
processing Green Power frames.
ZBOSS supports both sides: Green Power Device and Zigbee Infrastructure nodes:
Green Power Proxy Basic and Green Power Combo Basic.

ZBOSS Green Power Device (ZGPD) features:
§ Functioning as battery-less ZGPD
§ Unidirectional communication
§ Support for all Application ID and ZGPD ID
§ Support for auto-commissioning

ZBOSS Zigbee infrastructure features:
1. Support for infrastructure device functionality: Green Power Proxy Basic (GPPB)

and Green Power Combo Basic (GPCB) devices
2. Support for direct communication with ZGPD and relaying GP data frames from

Proxy Basic to Combo Basic device
3. GPD frame translation at Combo device to Zigbee ZCL
4. Support for all Application IDs and ZGPD IDs
5. Commissioning types:

§ Multi-hop commissioning involving both GPPB and GPCB
§ Proximity commissioning involving GPCB only
§ Auto-commissioning for unidirectional communication
§ Bidirectional commissioning for bidirectional communication
§ Application-assisted commissioning (user application can decide to allow or

disallow ZGPD commissioning)
§ Manufacturer-specific commissioning (support manufacturer-specific

commissioning frame)
6. Communication with GPD in scope of Green Power Basic: unidirectional
7. Partial bi-directional communication with GPD: non-standard for Green Power

Basic feature set bidirectional communication with GPD from Green Power Combo
Basic device (but not from Green Power Proxy Basic)

8. Support of Security (level 0b11) for bidirectional case

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 17 of 25

Security
The Zigbee security architecture includes security mechanisms at two layers of the
protocol stack. The NWK and APS layers are responsible for the secure transport for
their respective frames.

ZBOSS security features are:
1. Standard security mode level 5
2. Trust Center and device roles support
3. Preconfigured Trust Center link key
4. Joining secured network as a router or end device
5. NWK layer security

§ NWK keys management
6. APS layer security

§ End-to-end application keys
§ APS keys management
§ Trust Center link keys management

7. Support for tunneling
8. Install codes support
9. Distributed security
10. Smart energy security
11. Certificate-Based Key Establishment
12. Dynamic Link Key (r23)
13. Device Interview (r23)
14. APS Frame Counter Synchronization (r23)
15. Secured Channel and PAN Changes (r23)
16. Smart Energy Key Management Improvements (r23)
17. Trust Center Swap Out (r23)
18. Restricted Mode (r23)

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 18 of 25

ZCL
ZCL is a repository for cluster functionality. ZCL consists of a set of elements (such as
frame structures, attribute access commands, and data types) and a number of
cluster sets.

ZBOSS ZCL features include:
1. Well-predicted and small memory footprint:

§ No dynamically allocated memory at runtime
§ Static memory model is used

2. Size-effective executable code: easy to exclude unnecessary functionality
(clusters, commands, handlers, etc.) from build

3. Support for both ZCL client and server roles
4. Support for ZCL general commands
5. Implementation compliance with ZCL revision 8
6. Manufacturer-specific clusters support

The table below lists supported ZCL clusters.

ZCL Cluster Name:

Alarms On/Off

Basic On/Off Switch Config

Binary Input OTA Upgrade

Color Control Poll Control

Dehumidification Control Relative Humidity

Diagnostics Measurement

Door Lock Scenes

Electrical Measurement Shade Configuration

Fan Control Temperature

Groups Thermostat

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 19 of 25

The table below lists supported SE1.4 clusters.

IAS ACE Thermostat UI

IAS WD Configuration

IAS Zone Time

Identity Window Covering

Daily Schedule Illuminance Measurement
Level Control Meter Identification

Occupancy Sensing Power Configuration

Pressure Measurement Device Temperature Configuration

Analog Input Carbon Dioxide Measurement

Analog Value Multistate Input

PM2.5 Measurement Multistate Value

SE 1.4 Cluster Name:

Key Establishment Metering

DRLC Price

Messaging Tunneling

Prepayment Energy Management

Calendar Device Management

Events MDU Pairing

Sub-GHz

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 20 of 25

Base Device Behavior
Base device behavior specification defines the environment, initialization,
commissioning and operating procedures of a base device functioning on the Zigbee-
PRO stack to ensure profile interoperability.

ZBOSS BDB implemented features include:

1. Security: centralized and distributed
2. Link keys:

§ The default global TC link keys
§ Unique TC link keys
§ The distributed security global link keys
§ An install code derived preconfigured link keys

3. Commissioning modes:
§ Network steering
§ Network formation
§ Finding & binding

4. For sleepy ED, dynamic data polling based on the operating state of the node

SE1.4
Smart Energy 1.4 profile defines smart energy devices behavior, security procedures
and clusters.

ZBOSS SE1.4 features:
1. Multi band radio support:

§ 2.4 GHz radio
§ Sub-GHz radio
§ Multi-MAC “Selection” devices

2. Commissioning. ZBOSS implements procedures for the following SE
commissioning modes:

§ Formation and working as Trust Center (ZC only)
§ Auto-join
§ Rejoin to pre-configured PAN

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 21 of 25

§ Establishment of link key with Trust Center utilizing CBKE procedure
§ Establishment of partner link keys
§ Service Discovery
§ Rejoin and Recovery
§ Steady state

3. Security
§ Installation codes: 48, 64, 96, or 128 bit
§ Cipher suites: Crypto Suites 1 and 2

4. SE cluster – refer to a section describing clusters

Zigbee Direct
Zigbee Direct allows the sending of Zigbee messages via proxy to a BLE device and
vice versa. As a result, a device with a BLE radio is able to communicate with devices
on a Zigbee network.
ZBOSS supports the following Zigbee Direct roles and services:

• Zigbee Direct Device (ZDD). ZDD has both an IEEE 802.15.4 radio and a
Bluetooth Low Energy radio, running BLE in a Peripheral role

• Zigbee Virtual Device (ZVD). ZVD has at least BLE radio, running BLE in a
Central role

• Zigbee Direct Security Service
• Zigbee Direct Commissioning Service
• Zigbee Direct Tunnel Service

Production Configuration
ZBOSS supports production time configuration for end products. The idea is to have a
number of parameters which may be configured individually for each produced device,
such as following:
§ TX power
§ Installation code
§ Device IEEE address
§ Certificate
§ Application level data (attributes values, other)

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 22 of 25

Appendix I: ZBOSS Middleware
DSR offers integration of the DSR Smart Gateway [SGW] Middleware. It includes
everything needed for complete IoT solutions: Gateway Software capable of running
on Linux-based or barebone platforms, Scalable Cloud Backend, Customizable Mobile
Applications, Administrative and end-user UI, Analytics, and a Firmware Upgrade
Server.

Choosing this solution, developed by an experienced team, helps you to save time
and effort on the product development, while creating a production-grade, reliable,
and secure product.

Smart Gateway Functionality and hardware platform(s) can be adjusted according to
specific product requirements - from lightweight USB gateways, to set-top-boxes, and
Wi-Fi routers.

DSR Smart Gateway is an extendible modular solution allowing for configuration of the
software and hardware to fit the customer’s specific needs.

Integrated Sensors and Devices
DSR SGW Middleware has integrated support for 180+ devices from more than 40
vendors including Philips, Bosch, Legrand, OSRAM, Bega, IKEA and others.

The following are examples of the device types integrated into DSR SGW Middleware:

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 23 of 25

Extensions
§ Zigbee GW: manage and control ZB network
§ BLE GW: manage and control BLE devices
§ HTTP API: cloud connection
§ FW upgrade service: secure GW upgrade, connected devices OTA FW upgrade
§ REX: Rules eXecution engine (local control of scenarios; local data storage)
§ Direct API: mobile app direct connection to the GW
§ Wi-Fi commissioning: configure Wi-Fi client on the GW
§ Self-diagnostic and debug: remote troubleshoot of the GW
§ Provisioning and testing: manufacturing time configuration and testing

Reasons to choose Smart Gateway Middleware solution:

§ Production ready solution – saves time and development effort.
§ Broad ecosystem of connected devices.
§ Extendible modular architecture - easy to add new functionality both on

hardware/software level (BLE, Wi-Fi, Thread, Matter, etc.)
§ Portable solution with support of more than 15 vendors and platforms.
§ Extensive support from an experienced team.

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 24 of 25

Appendix II: DSR SE1.4 Test Harness
The DSR SE1.4 Test Harness (TH) is designed and developed to allow testing on all
levels: Application, ZCL, Zigbee PRO networking layer.
The TH key features

§ Developed with a rich experience in testing and understanding of necessary
verification levels.

§ Can be used in automated testing environments.
§ Provides extensive test reports required by Test Houses for validation.

DSR SE1.4 TH is powered by DSR’s ZBOSS stack and uses TI CC1352R1 HW as
802.15.4 radio, both 2.4 GHz and Sub-GHz. Its major components are:

§ TH engine
§ TH UI
§ Test scripts library
§ TH runs on Linux and Window OS 7 or higher (note: UI is provided for Windows

platform only)

SE1.4 TH features:

§ Python language: TH engine allows for running and validating test scripts
written in Python

§ Deep analysis: the engine allows for deep analysis and verification of packets
received, each layer of Zigbee packet and its content may be validated

§ Negative behavior: the engine is capable of simulating negative behavior as
defined in test specifications

§ Automation: the engine provides an API for running tests in batch mode,
allowing for test automation

§ HW independent: the engine is flexible for swapping 802.15.4 HW. CC1352 is
currently used, but it may be replaced with other 802.15.4 HW

§ Tests development: SE1.4 TH allows custom tests development
§ Ready building blocks: The rich extension library comes in a package. It

contains building blocks for test implementation: widely used Zigbee operations
are implemented as ready-to-use functions

§ Full SE1.4 certification test set is ready.
§ The TH engine is developed to be generic, suitable for testing all existing

Zigbee profiles – tests for ZB3.0, ZCL, BDB, GP, etc. can be implemented.

ZBOSS Datasheet version 1.10

Copyright © 2024 DSR Corporation Page 25 of 25

SE1.4 TH User interface:

For questions or additional information, please contact DSR Corporation at
contact@dsr-corporation.com.

